
Version 3.3 Format Specification MDF Format 1

Format Specification
MDF Format

Version 3.3

Version 3.3 Format Specification MDF Format 2

Document Management of Specification
Revision History
Document
Version

Date Editor Description

1.0 2006-09-25 Osr Conversion of old document and upgrade to MDF version 3.1:
Description of missing blocks (CE, CD) and missing
conversion formulas.

1.1 2006-10-31 Osr Example for start offset, changes and additions for different
elements.

1.2 2006-11-02 Osr Added MDF revision history, changed layout

1.3 2006-11-09 Osr Added TR block

1.4 2008-04-09 Osr Extension to MDF 3.2:
- exact time stamp for HDBLOCK
- changed LINK from signed to unsigned integer

1.5 2008-09-23 Osr Fixed error in HBLOCK
Added example for start time in ns / UTC offset

1.6 2009-01-07 Osr Extension to MDF 3.3
- added SRBLOCK

1.7 2009-04-21 Osr Added code page for IDBLOCK
Improved description of SRBLOCK
Removed support of 10 Byte double (extended precision)
channel data type because not specified by IEEE 754.
Added remark on time stamps relative to HDBLOCK

Version 3.3 Format Specification MDF Format 3

Table of Contents
1 Introduction 5

1.1 Outline 5
1.2 Abbreviations 5

2 MDF Versions 6

2.1 Version History 6
2.2 Version Handling 6
2.3 Rules to Ensure MDF Compatibility between Versions 7

3 MDF General Block Format 7

3.1 Definition of Data Types Used 9
3.2 Overview of Block Types Used 9
3.3 The File Identification Block IDBLOCK 10

3.3.1 Block structure of IDBLOCK 10
3.4 The Header Block HDBLOCK 11

3.4.1 Block structure of HDBLOCK 11
3.5 The Text Block TXBLOCK 13

3.5.1 Block structure of TXBLOCK 13
3.6 The Program-Specific Block PRBLOCK 13

3.6.1 Block structure of PRBLOCK 13
3.7 The Trigger Block TRBLOCK 13

3.7.1 Block structure of TRBLOCK 13
3.8 The Sample Reduction Block SRBLOCK 14

3.8.1 Block structure of SRBLOCK 14
3.8.2 Motivation for Sample Reduction 14
3.8.3 Layout of Reduced Samples 14

3.9 The Data Group Block DGBLOCK 16
3.9.1 Block structure of DGBLOCK 16

3.10 The Channel Group Block CGBLOCK 16
3.10.1 Block structure of CGBLOCK 16

3.11 The Channel Block CNBLOCK 17
3.11.1 Block structure of CNBLOCK 17

3.12 The Channel Conversion Block CCBLOCK 19
3.12.1 Block structure of CCBLOCK 19
3.12.2 CCBLOCK – Linear Function with 2 Parameters 19
3.12.3 CCBLOCK – Polynomial Function with 6 Parameters 20
3.12.4 CCBLOCK – Tabular, with Interpolation 20
3.12.5 CCBLOCK – Tabular 20
3.12.6 CCBLOCK – Exponential 20
3.12.7 CCBLOCK – Logarithmic 21
3.12.8 CCBLOCK –Rational Conversion Formula 21
3.12.9 CCBLOCK – ASAM-MCD2 Text formula 22
3.12.10 CCBLOCK – ASAM-MCD2 Text Table 22
3.12.11 CCBLOCK – ASAM-MCD2 Text Range Table 22
3.12.12 CCBLOCK – Data Structure Date 23
3.12.13 CCBLOCK – Data Structure Time 23

3.13 The Channel Dependency Block CDBLOCK 24

Version 3.3 Format Specification MDF Format 4

3.13.1 Block structure of CDBLOCK 24
3.14 The Channel Extension Block CEBLOCK 25

3.14.1 Block structure of CEBLOCK 25
3.14.2 DIM block supplement 25
3.14.3 Vector CAN block supplement 25

4 MDF Data Format 26

4.1 Data Format for Sorted MDF Files 26
4.2 Data Format for Unsorted MDF Files 28
4.3 Reading Signal Values from a Data Record 28

4.3.1 Example 1: Little Endian (Intel) Byte Order 29
4.3.2 Example 2: Big Endian (Motorola) Byte Order 30

Version 3.3 Format Specification MDF Format 5

1 Introduction

MDF (Measurement Data Format) is a binary file format that can be used for recording, exchanging,
and post-measurement analysis of measurement data. MDF is well established in the automotive
industry. The MDF format provides

• exchange between a number of tools in the automotive industry
• compact description of data
• fast access to general file info independent of the file length

This document serves to specify MDF version 3.3.

1.1 Outline

Chapter 2 provides a history of the MDF format and describes the conventions for extending and
updating the format. Chapter 3 specifies the structure of the MDF file and the various block types.
Chapter 4 describes the structure of the data block and shows how to read signal values.

1.2 Abbreviations

ASAM Association for Standardization of Automation and Measuring Systems
CCBLOCK Channel Conversion BLOCK
CDBLOCK Channel Dependency BLOCK
CEBLOCK Channel Extension BLOCK
CGBLOCK Channel Group BLOCK
CNBLOCK Channel BLOCK
DGBLOCK Data Group BLOCK
HDBLOCK Header BLOCK
IDBLOCK Identification BLOCK
LSB Least Significant Bit
MDF Measure Data Format
MSB Most Significant Bit
NIL NIL pointer (0x00000000)
PRBLOCK Program BLOCK
SRBLOCK Sample Reduction Block
TRBLOCK Trigger Block
TXBLOCK Text BLOCK
UTC Universal Coordinated Time

Version 3.3 Format Specification MDF Format 6

2 MDF Versions

The MDF format has been extended several times since its creation in 1991. This chapter provides a
brief history of the major changes to the MDF format and instructions how to handle future updates.

2.1 Version History

MDF was developed in 1991 by Vector Informatik GmbH in co-operation with Robert Bosch GmbH.
Since then, the format was only extended in smaller details, for instance to support new data types for
strings, fields for ASAM compatible signal names, or new conversion rules. In the meantime, the MDF
format has become a standard for measurement data in the automotive field.

Major Revisions:

Year Version Description
1991 2.03 First official release of MDF.
1996 2.11 New conversion type (CCBLOCK): ASAM-MCD2 text.
2000 2.12 New conversion type (CCBLOCK): ASAM-MCD2 text table.

New field (CNBLOCK): "Long Signal Name".
2000 2.13 New extension type (CEBLOCK): Vector CAN block.
2001 2.15 New data types (CNBLOCK): "String" and "Byte Array".

New conversion types (CCBLOCK): "Date" and "Time".
2002 3.00 New conversion type (CCBLOCK): ASAM-MCD2 text range table.

New fields (CNBLOCK): "Display Name" and "Additional Byte Offset".
2005 3.01 N-dimensional dependency in CDBLOCK.
2006 3.10 New signal data types (CNBLOCK) to define a specific Byte order for integer

and floating point signal values (can differ from default Byte order).
Allow crossing of Byte boundaries for Integer signals with bit offset > 0.

2008 3.20 Exact start time and time quality information (HDBLOCK)
LINK changed from signed to unsigned integer
(maximum file size of a MDF file thus extended from (approx.) 2 GB to 4 GB)

2009 3.30 Sample reduction for a channel group (SRBLOCK)
Specification of code page for strings (IDBLOCK)
channel data type 10 Byte double (extended precision) obsolete.

2.2 Version Handling

The MDF version number consists of three digits, a major version number, a minor version number
and a revision number. Normally only the major and minor version numbers are stated, e.g. V3.2 with
major version number "3" and minor version number "2". In the IDBLOCK, an additional revision
number is appended. For the current version, for example, the version string reads "3.20" which must
be interpreted as V3.2, revision "0" (and not as minor version number "20"!). The restriction to three
digits implies that both minor version number and revision number must never exceed nine.

Each change in the MDF file format must result in a higher version number, i.e. the three-digit-number
consisting of major, minor and revision number must be larger than that of the previous version (e.g.
310 > 301 for versions 3.10 and 3.01).

Here are some general guidelines when to increase which of the numbers:

Element Description
major version
number

Changes in the MDF file format that may result in a misinterpretation of the data
when evaluated by some older tool require a change of the major version
number. A tool that evaluates a MDF file that has a higher major version number
than what is supported by the tool should reject reading the file and generate a
warning or error message.

minor version
number

Changes in the MDF file format that may not result in a misinterpretation of the
data when evaluated by some older tool require only a change of the minor
version number. Still the older tool may miss new features/information stored in
the new MDF version. Normally it would simply ignore them and generate a

Version 3.3 Format Specification MDF Format 7

warning message.
revision number Changes in the MDF file format that do not affect the interpretation of an older

tool may be done by changing the revision number only.

2.3 Rules to Ensure MDF Compatibility between Versions

To ensure a high degree of compatibility, new entries are only appended to the blocks. This implies
the following consequences for the evaluation tool:

1. If a tool detects a block that has a smaller block length than expected by the version
supported by the tool, the additional fields are set to their default values. This is the case, if
the tool supports a later MDF version than the file is encoded in.

2. If the tool detects a block that has a larger block length than expected by the version

supported by the tool, the additional fields are ignored. This is the case, if the tool supports a
previous MDF version compared to the one the file is encoded with. In this case, the tool may
interpret the measurement data in the file incorrectly; thus the MDF major version number has
to be increased when introducing such a change.

3 MDF General Block Format

The MDF file is composed of a series of blocks. Each block consists of a number of contiguous Bytes
and can be seen as a record or structure of data fields. There are different types of blocks. Blocks can
include pointers to other blocks that are stored in a data field of type LINK. A link is an absolute Byte
position within the file, starting at the beginning of the file. Thus a normally tree-like hierarchy of blocks
is formed.

The file always starts with the file identifier block IDBLOCK. The file header block HDBLOCK follows
at byte position 64. All other blocks are linked via LINKs and can be stored in arbitrary order in the file.

With the exception of the IDBLOCK and the data block, the "Block Size" field indicates the size of
each block. To ensure upward compatibility, the block sizes specified in this document should be
regarded as the minimum block sizes in each case.

The following figure gives an overview of the general block structure of an MDF file:

Version 3.3 Format Specification MDF Format 8

HDBlock

file identification

file header
measurement
file comment

program specific data

IDBlock

TXBlock

CGBlock

PRBlock

channel group 1.1
DGBlock

trigger block 1

data records 1 data group 1

data records 2

CNBlock

CNBlock

CNBlock

TXBlock

CGBlock

TXBlock

DGBlock
data group 2

CNBlock
channel 2.1.2

CNBlock
channel 2.1.1

CGBlock
channel group 2.1

TXBlock

CCBlock

TXBlockCNBlock

channel 1.1.1

channel 1.1.2

channel comment

unique identifier

TXBlock

CCBlock

TXBlock
trigger block 2

channel comment

channel comment

unique identifier

long name

conversion rule

CGBlock
channel group 1.2 channel 1.2.1

channel 1.2.2

CEBlock

CDBlock

conversion rule

dependencies

extensions

conversion rule

CEBlock

CDBlock
dependencies

extensions

TRBlock

TRBlock

Version 3.3 Format Specification MDF Format 9

3.1 Definition of Data Types Used

Data Type Format
CHAR 1 byte representing a character (C data type: char). The storage of character

strings may or may not be terminated by a zero byte.
UINT8 8-bit unsigned integer
UINT16 16-bit unsigned integer
INT16 16-bit signed integer
UINT32 32-bit unsigned integer
UINT64 64-bit unsigned integer
BOOL Boolean variable, stored as 16-bit value

If contents != 0 then TRUE, if contents == 0 then FALSE
REAL Floating-point compliant with IEEE 754, double precision (64 bits)
LINK 32-bit unsigned integer, used as byte position within the file. If a LINK is nil

(corresponds to 0), this means the corresponding block does not exist and the
LINK cannot be de-referenced. Remember that all blocks except the IDBLOCK
and HDBLOCK are optional.

3.2 Overview of Block Types Used

Block Type Description Purpose
IDBLOCK Identification block Identification of the file as MDF file and

MDF version
HDBLOCK Header block General description of the measurement

file
TXBLOCK Text block Contains a string with a variable length
PRBLOCK Program block Contains proprietary data of the application

generating the MDF file
DGBLOCK Data group block Description of data block that may refer to

one or several channel groups
CGBLOCK Channel group block Description of a channel group, i.e. signals

which are always measured jointly
CNBLOCK Channel block Description of a channel
CCBLOCK Channel conversion block Description of a conversion formula for a

channel
TRBLOCK Trigger block Description of a trigger event
CDBLOCK Channel dependency block Description of dependency between

channels
CEBLOCK Channel Extension block Additional information about the data

source of the channel
SRBLOCK Sample Reduction block Description of a sample reduction, i.e.

alternative data rows for a channel group
with usually lower number of samples.

Version 3.3 Format Specification MDF Format 10

3.3 The File Identification Block IDBLOCK

The IDBLOCK always begins at file position 0 and has a constant length of 64 Bytes. It contains
information to identify the file. This includes information about the source of the file and general format
specifications.

3.3.1 Block structure of IDBLOCK
Data type Count Description
CHAR 8 File identifier, always contains "MDF ". ("MDF" followed by five spaces)
CHAR 8 Format identifier, a textual representation of the format version for display, e.g.

"3.30 " for version 3.3 revision 0 (see section 2 MDF Version)
CHAR 8 Program identifier, to identify the program which generated the MDF file
UINT16 1 Default Byte order used for this file

(can be overruled for values of a signal in CNBLOCK)
0 = Little Endian (Intel order)
Any other value = Big Endian (Motorola order)

UINT16 1 Default floating-point format used for this file
(can be overruled for values of a signal in CNBLOCK)
0 = Floating-point format compliant with IEEE 754 standard
1 = Floating-point format compliant with G_Float (VAX architecture) (obsolete)
2 = Floating-point format compliant with D_Float (VAX architecture) (obsolete)

UINT16 1 Version number of MDF format, i.e. 330 for this version
UINT16 1 Code Page number

The code page used for all strings in the MDF file except of strings in IDBLOCK
and string signals (string encoded in a record).
Value = 0: code page is not known.
Value > 0: identification number of extended ASCII code page (includes all
ANSI and OEM code pages) as specified by Microsoft, see
http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx.

The code page number can be used to choose the correct character set for
displaying special characters (usually ASCII code ≥ 128) if the writer of the file
used a different code page than the reader. Reading tools might not support the
display of strings stored with a different code page, or they might only support a
selection of (common) code pages.

Valid since version 3.30. Default value: 0
Note: the code page is only for documentation and not required information. It
might be ignored by tools reading the file, especially if they support only a MDF
version < 3.30.

CHAR 2 Reserved
CHAR 30 Reserved

Please note that both the default Byte order and the default floating point format apply to the complete
file, i.e. all values (integers, floats) have to be interpreted accordingly. The only exception is that signal
values can be stored with a different format in the data block. In this case, the format specified by the
signal data type of the CNBLOCK overrules the default format.

For example, the complete file might use Little Endian (Intel) as default Byte order; nevertheless a
signal in the data block was stored in Big Endian (Motorola) Byte order. In this case when reading the
signal value from a record in the data block, the Bytes have to be interpreted with Big Endian
(Motorola) order, i.e. on an Intel system the Bytes have to be swapped.

http://msdn.microsoft.com/en-us/library/dd317756(VS.85).aspx

Version 3.3 Format Specification MDF Format 11

3.4 The Header Block HDBLOCK

The HDBLOCK always begins at file position 64. It contains general information about the contents of
the measured data file.

3.4.1 Block structure of HDBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "HD"
UINT16 1 Block size of this block in bytes (entire HDBLOCK)
LINK 1 Pointer to the first data group block (DGBLOCK)
LINK 1 Pointer to the measurement file comment text (TXBLOCK) (NIL allowed)
LINK 1 Pointer to program block (PRBLOCK) (NIL allowed)
Uint16 1 Number of data groups (redundant information)
CHAR 10 Date at which the recording was started in "DD:MM:YYYY" format
CHAR 8 Time at which the recording was started in "HH:MM:SS" format

for locally displayed time, i.e. considering the daylight saving time (DST)
Note: all time stamps in a time channel are only relative to the start time of the
measurement (see remark on time channel type in CNBLOCK)

CHAR 32 Author's name
CHAR 32 Name of the organization or department
CHAR 32 Project name
CHAR 32 Subject / Measurement object, e.g. vehicle information
UINT64 1 Time stamp at which recording was started in nanoseconds.

Elapsed time since 00:00:00 01.01.1970 (local time)
(local time = UTC time + UTC time offset)
Note: the local time does not contain a daylight saving time (DST) offset!
Valid since version 3.20. Default value: 0
See remark below

INT16 1 UTC time offset in hours (= GMT time zone)
For example 1 means GMT+1 time zone = Central European Time (CET).
The value must be in range [-12, 12], i.e. it can be negative!
Valid since version 3.20. Default value: 0 (= GMT time)

UINT16 1 Time quality class
0 = local PC reference time (Default)
10 = external time source
16 = external absolute synchronized time
Valid since version 3.20. Default value: 0

CHAR 32 Timer identification (time source), e.g. "Local PC Reference Time" or "GPS
Reference Time".
Valid since version 3.20. Default value: empty string

Note:
The UINT64 time stamp in nanoseconds introduced in version 3.20 specifies the start time more
precisely than the textual Date and Time fields. However, for compatibility to older tools, the textual
fields must be filled in correctly even if using the UINT64 time stamp. On the other hand, if the UINT64
time stamp is zero, then the textual Date and Time fields must be used.

Examples for Time and Time stamp / UTC time offset

Central Europe (GMT+1) 2008-01-25 at 16:20:07 (Central European Time CET)

 Date string: "25:01:2008" Time stamp [ns]: 1201278007000000000
 Time string: "16:20:07" UTC offset [h]: 1

Central Europe (GMT+1) 2008-09-03 at 12:22:53 (Central European Summer Time CEST)

 Date string: "03:09:2008" Time stamp [ns]: 1220440973000000000
 Time string: "12:22:53" UTC offset [h]: 1

Version 3.3 Format Specification MDF Format 12

Version 3.3 Format Specification MDF Format 13

3.5 The Text Block TXBLOCK

The TXBLOCK contains an optional comment for the measured data file, channel group or signal, or
the long name of a signal. The text length results from the block size.

3.5.1 Block structure of TXBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "TX"
UINT16 1 Block size of this block in bytes (entire TXBLOCK)
CHAR variable Text (new line indicated by CR and LF; end of text indicated by 0)

Note:
A file may reserve spaces to allow modifying the comment within its reserved range without the need
to rewrite the entire MDF file.

3.6 The Program-Specific Block PRBLOCK

The PRBLOCK contains non-standardized data to exchange between the acquisition program and the
evaluation program.

3.6.1 Block structure of PRBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "PR"
UINT16 1 Block size of this block in bytes (entire PRBLOCK)
CHAR variable Program-specific data

3.7 The Trigger Block TRBLOCK

The TRBLOCK serves to describe trigger events that occurred during the recording. The trigger
events are related to a data group. For each trigger event, the time when the trigger occurred is
recorded. As additional information, the pre and post trigger times of the trigger event can be stated,
i.e. the time periods recorded before and after the trigger occurred. The comment might be used to
give information about the trigger source or condition.

3.7.1 Block structure of TRBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "TR"
UINT16 1 Block size of this block in bytes (entire TRBLOCK)
LINK 1 Pointer to trigger comment text (TXBLOCK) (NIL allowed)
UINT16 1 Number of trigger events n (0 allowed)
REAL 1 Trigger time [s] of trigger event 1
REAL 1 Pre trigger time [s] of trigger event 1
REAL 1 Post trigger time [s] of trigger event 1
…
REAL 1 Trigger time [s] of trigger event n
REAL 1 Pre trigger time [s] of trigger event n
REAL 1 Post trigger time [s] of trigger event n

Version 3.3 Format Specification MDF Format 14

3.8 The Sample Reduction Block SRBLOCK

The SRBLOCK serves to describe a sample reduction for a channel group, i.e. an alternative sampling
of the signals in the channel group with a usually lower number of sampling points. There can be
several sample reductions for the same channel group which are stored in a forward linked list of
SRBLOCKs starting at the CGBLOCK.

Each SRBLOCK describes a sample reduction calculated with a specific time interval. Roughly
explained, the reduction divides the time axis into intervals of the given fixed length and compresses
all samples within one interval to three values: mean, minimum and maximum value. Each sample
reduction applies to all signals of its parent channel group. For details of calculating and storing a
sample reduction for a channel group, see below.

Sample reductions are only "convenience" information to accelerate graphical display or offline
analysis of the signal data. It may be omitted without any loss of information. If not present, it can be
added later by offline processing of the file.

3.8.1 Block structure of SRBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "SR"
UINT16 1 Block size of this block in bytes (entire SRBLOCK)
LINK 1 Pointer to next sample reduction block (SRBLOCK) (NIL allowed)
LINK 1 Pointer to the data block for this sample reduction (see below)
UINT32 1 Number of reduced samples in the data block.
REAL 1 Length of time interval [s] used to calculate the reduced samples.

3.8.2 Motivation for Sample Reduction
When drawing a graphical time diagram of a channel that has a large number of sample points, the
application usually has two options:

1. Print each single sample point into the graph. Since there are more sample points than pixels
for the time axis, several sample points will be drawn onto the same pixel position for the time
axis. Assuming that the time axis is horizontal, we thus will not get a point in time, but a
vertical line. The advantage here is that this line shows the minimum and maximum value that
occurred for the time interval represented by the pixel. However, drawing each single sample
point may be quite slow, especially for a huge number of samples.

2. Print only one sample point per time pixel. Thus we really get a point for each pixel and
accelerate the drawing. On the other hand, the local minimum and maximum values that
occurred in the time interval of the pixel will not be visible any longer.

The idea of the sample reduction is to provide a trade-off between the two methods. For each pixel of
the time axis three values are required: the minimum, maximum and mean value for the time interval
that will be reduced to a pixel position on screen. Obviously, the drawing application could calculate
these values each time again from the row of sample points. With the SRBLOCK, these values can be
calculated only once and stored in the MDF file.

The sample reduction applies to all channels of a channel group because the sample points of the
channels in a record must have the same time stamp. The time interval represented by a pixel can
vary due to different screen resolutions, or when the graph is zoomed. Thus, a number of sample
reductions can be stored for different interval lengths. The drawing application then can determine the
best fitting interval length when drawing the graph.

3.8.3 Layout of Reduced Samples
For a given channel group, a linked list of sample reduction blocks (SRBLOCKs) can be added. Each
SRBLOCK uses a different time interval for the sample reduction and points to a special data block
containing the reduced samples.

Version 3.3 Format Specification MDF Format 15

Note: the data block referenced by a SRBLOCK must not contain other records than the records of the
reduced signal data! Thus a record ID is not necessary.

For the sample reduction, the time axis will be divided into time intervals of equal length. Each time
interval that contains at least one sample point will be stored as reduced sample for the SRBLOCK.
For each channel, the reduced sample contains its minimum, maximum and mean value of all sample
points within the given time interval.

Since three values for each channel must be stored for a reduced sample, three records are stored
subsequently (denoted as record 1, record 2 and record 3). The record layout of the three records is
equal to the record layout defined by the parent channel group (but without record ID). However, for
each of the three records, the meaning of the signal is different, see table below.

 Normal numeric channels Time channel
Record 1 Mean value of all samples

for this channel within the
given time interval

Start time t of interval.
The interval is defined as [t, t+L[, where L is the fixed
length of the intervals for this SRBLOCK.

Record 2 Minimum value of all
samples for this channel
within the given time interval

Minimum raster value Δ > 0 for the given interval, or 0 if no
valid raster value available for the interval.

The raster value of a sample is the calculated difference
between the time stamp of the current sample and of the
previous one. The raster value is undefined if the current
sample is the very first sample (record index 0).
Mathematically the minimum raster value of the interval [t,
t+L[is defined as minimum of all Δi = ti – ti-1 for all record
indexes i > 0 so that ti is in [t, t+L[. If there is no single valid
Δi for this interval exists, the value must be set to 0.

Record 3 Maximum value of all
samples for this channel
within the given time interval

Maximum raster value Δ > 0 for the given interval, or 0 if no
valid raster value available for the interval
(see explanation for Record 2).

Please note that the determination of minimum, maximum and mean value considers the raw values
and not the physical values.

For non-numerical signal data types, a sample reduction does not make much sense because these
values cannot be represented in a graph. In case both numerical and non-numerical values occur
within the same channel group, the minimum, maximum and mean value for the channel with the non-
numerical signal data type is not defined. As good practice simply store the non-numerical values of
the first sample point within the interval for all three records of the reduced sample.

Version 3.3 Format Specification MDF Format 16

3.9 The Data Group Block DGBLOCK

The DGBLOCK gathers information and links related to its data block. Thus the branch in the tree of
MDF blocks that is opened by the DGBLOCK contains all information necessary to understand and
decode the data block referenced by the DGBLOCK.

The DGBLOCK can contain several channel groups. In this case the MDF file is "unsorted". If there is
only one channel group in the DGBLOCK, the MDF file is "sorted" (please refer to chapter 4 for
details).

3.9.1 Block structure of DGBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "DG"
UINT16 1 Block size of this block in bytes (entire DGBLOCK)
LINK 1 Pointer to next data group block (DGBLOCK) (NIL allowed)
LINK 1 Pointer to first channel group block (CGBLOCK) (NIL allowed)
LINK 1 Pointer to trigger block (TRBLOCK) (NIL allowed)
LINK 1 Pointer to the data block (see separate chapter on data storage)
UINT16 1 Number of channel groups (redundant information)
UINT16 1 Number of record IDs in the data block

0 = data records without record ID
1 = record ID (UINT8) before each data record
2 = record ID (UINT8) before and after each data record

UINT32 1 Reserved

3.10 The Channel Group Block CGBLOCK

The CGBLOCK contains a collection of channels which are stored in a record, i.e. which have the
same time sampling.

3.10.1 Block structure of CGBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "CG"
UINT16 1 Block size of this block in bytes (entire CGBLOCK)
LINK 1 Pointer to next channel group block (CGBLOCK) (NIL allowed)
LINK 1 Pointer to first channel block (CNBLOCK) (NIL allowed)
LINK 1 Pointer to channel group comment text (TXBLOCK) (NIL allowed)
UINT16 1 Record ID, i.e. value of the identifier for a record if the DGBLOCK defines a

number of record IDs > 0
UINT16 1 Number of channels (redundant information)
UINT16 1 Size of data record in Bytes (without record ID),

i.e. size of plain data for a each recorded sample of this channel group
UINT32 1 Number of records of this type in the data block

i.e. number of samples for this channel group
LINK 1 Pointer to first sample reduction block (SRBLOCK) (NIL allowed)

Version 3.3 Format Specification MDF Format 17

3.11 The Channel Block CNBLOCK

The channel block contains detailed information about a signal and how it is stored in the record.

3.11.1 Block structure of CNBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "CN"
UINT16 1 Block size of this block in bytes (entire CNBLOCK)
LINK 1 Pointer to next channel block (CNBLOCK) of this channel group (NIL allowed)
LINK 1 Pointer to the conversion formula (CCBLOCK) of this signal (NIL allowed)
LINK 1 Pointer to the source-depending extensions (CEBLOCK) of this signal (NIL

allowed)
LINK 1 Pointer to the dependency block (CDBLOCK) of this signal (NIL allowed)
LINK 1 Pointer to the channel comment (TXBLOCK) of this signal (NIL allowed)
UINT16 1 Channel type

0 = data channel
1 = time channel for all signals of this group (in each channel group, exactly one
channel must be defined as time channel)
The time stamps recording in a time channel are always relative to the start time
of the measurement defined in HDBLOCK.

CHAR 32 Short signal name, i.e. the first 31 characters of the ASAM-MCD name of the
signal (end of text should be indicated by 0).

If the name is longer than 31 characters, the complete name is contained in the
TXBLOCK referenced by field "long signal name" (see below). In this case, the
short signal name should be ignored in favour of the long name.

Note: The name of a signal in combination with the information about its source
(CEBLOCK) should be unique within the MDF file because this name might be
used as identifier for evaluation programs.

CHAR 128 Signal description (end of text should be indicated by 0)
UINT16 1 Start offset in bits to determine the first bit of the signal in the data record.

The start offset N is divided into two parts: a "Byte offset" (= N div 8) and a "Bit
offset" (= N mod 8). The channel block can define an "additional Byte offset" (see
below) which must be added to the Byte offset.

The (total) Byte offset is applied to the plain record data, i.e. without record ID. It
determines the first Byte that contains bits of the signal value. The bit offset is
used to determine the LSB within the Bytes for the signal value. For more details
and an example, please refer to section 4.3 Reading Signal Values from a Data
Record.

UINT16 1 Number of bits used to encode the value of this signal in a data record
Signal data type
Note: for 0-3 the default Byte order defined in IDBLOCK is used, for 9-16 the
default Byte order is overruled!
0 = unsigned integer
1 = signed integer (two’s complement)
2 = IEEE 754 floating-point format FLOAT (4 bytes)
3 = IEEE 754 floating-point format DOUBLE (8 bytes)

Default Byte
order from
IDBLOCK

4 = VAX floating-point format (F_Float)
5 = VAX floating-point format (G_Float)
6 = VAX floating-point format (D_Float)

obsolete

7 = String (NULL terminated)
8 = Byte Array (max. 8191 Bytes, constant record length!)

UINT16 1

9 = unsigned integer
10 = signed integer (two’s complement)
11 = IEEE 754 floating-point format FLOAT (4 bytes)
12 = IEEE 754 floating-point format DOUBLE (8 bytes)

Big Endian
(Motorola)
Byte order

Version 3.3 Format Specification MDF Format 18

Data type Count Description
13 = unsigned integer
14 = signed integer (two’s complement)
15 = IEEE 754 floating-point format FLOAT (4 bytes)
16 = IEEE 754 floating-point format DOUBLE (8 bytes)

Little Endian
(Intel)
Byte order

BOOL 1 Value range valid flag:
TRUE = both the minimum and maximum raw value that occurred for this signal
in the given time range are known and stored in the next two fields
FALSE = the next two fields for minimum and maximum signal value are not valid

REAL 1 Minimum signal value that occurred for this signal (raw value)
(only valid if raw value range is known)

REAL 1 Maximum signal value that occurred for this signal (raw value)
(only valid if raw value range is known)

REAL 1 Sampling rate for a virtual time channel. Unit [s]
Can be used to define a so-called "virtual time channel", i.e. a time channel where
the number of bits is equal to zero. In this case, the time stamps are not stored in
the data record but determined by the record index and the sampling rate.
Note: Not to be applied for value channels or real time channels.

LINK 1 Pointer to TXBLOCK that contains the ASAM-MCD long signal name
(NIL allowed). See remarks for short signal name above.
Valid since version 2.12. Default value: NIL.

LINK 1 Pointer to TXBLOCK that contains the signal's display name (NIL allowed)
Valid since version 3.00. Default value: NIL.

UINT16 1 Additional Byte offset of the signal in the data record (default value: 0).
The additional Byte offset is applied to the plain record data, i.e. without record
ID. It determines the Byte from with to apply the start offset.
Note: to ensure compatibility, this field should only be used if the start offset in
bits is not sufficient to express the start position, i.e. if the index of the first Byte is
≥ 8192
.
Valid since version 3.00. Default value: 0.

Signals of 1 to 64 bits are supported both for unsigned and signed integers. For floating-point numbers
compliant with the IEEE 754 standard, signals with 32 or 64 bits (corresponding to single and double)
are supported. This applies both to data and time channels.

Note: To determine the signal data type, the field "number of bits" must be evaluated, too.

For the data type String and Byte Array the number of bits must be a multiple of 8 and can be in the
range from 8 up to 65528 bits.
The start offset of Floating point signals or String and Byte Arrays must be a multiple of 8 (1-Byte
alignment).
Integer data types must fit into 8 contiguous Bytes.

Version 3.3 Format Specification MDF Format 19

3.12 The Channel Conversion Block CCBLOCK

The data records only store raw values, i.e. the values as they are provided by the data source (e.g.
ECU). The CCBLOCK serves to specify a conversion formula that can be used to convert these
values into physical values with physical units.

3.12.1 Block structure of CCBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "CC"
UINT16 1 Block size of this block in bytes (entire CCBLOCK)
BOOL 1 Physical value range valid flag:

TRUE = both the minimum and maximum (physical) value that occurred for this
signal in the given time range are known and stored in the next two fields
FALSE = the next two fields for minimum and maximum signal value are not valid

REAL 1 Minimum physical signal value that occurred for this signal
(only valid if physical value range is known)

REAL 1 Maximum physical signal value that occurred for this signal
(only valid if physical value range is known)

CHAR 20 Physical unit (string should be terminated with 0)
UINT16 1 Conversion type (formula identifier)

0 = parametric, linear
1 = tabular with interpolation
2 = tabular
6 = polynomial function
7 = exponential function
8 = logarithmic function
9 = rational conversion formula
10 = ASAM-MCD2 Text formula
11 = ASAM-MCD2 Text Table, (COMPU_VTAB)
12 = ASAM-MCD2 Text Range Table (COMPU_VTAB_RANGE)
132 = date (Based on 7 Byte Date data structure)
133 = time (Based on 6 Byte Time data structure)
65535 = 1:1 conversion formula (Int = Phys)

UINT16 1 Size information about additional conversion data (optional)
Conversion types 0, 6, 7, 8, 9: number of parameters
Conversion types 1, 2, 11, 12: number of value pairs
Conversion type 10: number of characters

... variable Additional conversion data (optional)
Parameters (for type 0, 6, 7, 8, 9) or table (for type 1, 2, 11, or 12) or text (for type
10), depending on the conversion formula identifier.
See formula-specific block supplement.

The following specifies the conversion formulas or their representation in CCBLOCK in detail. Int
refers to the raw (internal) value stored in the MDF file. Phys is the converted physical value.

3.12.2 CCBLOCK – Linear Function with 2 Parameters

12* PPIntPhys +=

Data type Count Description
REAL 1 P1
REAL 1 P2

Version 3.3 Format Specification MDF Format 20

3.12.3 CCBLOCK – Polynomial Function with 6 Parameters

1]65[*3
)]65(*4[2

PPPIntP
PPIntPPPhys

−−−
−−−

=

P6: only needed for twos complement representation:

For 1 Byte values P6* should be set to 256
For 2 Byte values P6* should be set to 65536
It is:
If Int > P6* / 2 – 1 Then P6 = P6*
If Int ≤ P6* / 2 – 1 Then P6 = 0

Data type Count Description
REAL 1 P1
REAL 1 P2
REAL 1 P3
REAL 1 P4
REAL 1 P5
REAL 1 P6

3.12.4 CCBLOCK – Tabular, with Interpolation
Base is a table with n break points. The int values are given in an increasing order (strictly
monotonous increasing). If a value x is located between two table values, (tablevalue[i] ≤ x <
tablevalue[i+1]), linear interpolation between physvalue[i] and physvalue[i+1] is used. Is x < than Int
value 1, Physvalue 1 will be returned. If x is larger than or equal to the greatest Int value, Phys value n
will be returned.

Data type Count Description
REAL 1 Int value 1
REAL 1 Phys value 1
...
REAL 1 Int value n
REAL 1 Phys value n

3.12.5 CCBLOCK – Tabular
Basis is a table with n break points. The int values are given in an increasing order (strictly
monotonous increasing). If a value x is located between two table values, the next lower phys
value is used. If x is larger than or equal to the greatest Int value, Phys value n will be returned.

Data type Count Description
REAL 1 Int value 1
REAL 1 Phys value 1
...
REAL 1 Int value n
REAL 1 Phys value n

3.12.6 CCBLOCK – Exponential
If P4 = 0:

2
1

36*)7(ln

P
P

PPPInt

Phys
⎟
⎠
⎞

⎜
⎝
⎛ −−

=

Version 3.3 Format Specification MDF Format 21

If P1 = 0:

5

4

6
7

3

ln

P

P

P
PInt

P

Phys
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −
−

=

Data type Count Description
REAL 1 P1
REAL 1 P2
REAL 1 P3
REAL 1 P4
REAL 1 P5
REAL 1 P6
REAL 1 P7

3.12.7 CCBLOCK – Logarithmic
If P4 = 0:

2
1

36*)7(

P
Phys e P

PPPInt
⎟
⎠
⎞

⎜
⎝
⎛ −−

=

If P1 = 0:

5

4

6
7

3

P

P

P
PInt

P

Phys e
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛ −
−

=

Data type Count Description
REAL 1 P1
REAL 1 P2
REAL 1 P3
REAL 1 P4
REAL 1 P5
REAL 1 P6
REAL 1 P7

3.12.8 CCBLOCK –Rational Conversion Formula

6*5*4
3*2*1

2

2

PIntPIntP
PIntPIntPPhys

++
++

=

Attention: In contrast to ASAM-MCD 2MC Keyword RAT_FUNC, in MDF the conversion is vice versa,
i.e. from raw (internal) value to physical value!

Version 3.3 Format Specification MDF Format 22

Data type Count Description
REAL 1 P1
REAL 1 P2
REAL 1 P3
REAL 1 P4
REAL 1 P5
REAL 1 P6

3.12.9 CCBLOCK – ASAM-MCD2 Text formula
With this conversion a physical value is assigned to a given Int value by using a calculation rule which
consists of a text formula. In the text formula the Int value is specified as X1.

Example: The text formula "X1 * X1 + 1" multiplies the Int value by itself and adds 1 to the result.
See also ASAM-MCD 2MC keyword FORMULA.

Data type Count Description
CHAR 256 Text formula (string should be terminated by 0)

3.12.10 CCBLOCK – ASAM-MCD2 Text Table
With this conversion a given Int value a text is assigned within a table. This can be used to assign bit
values or array of bits to verbal descriptions (for example "Gear 1", "Gear 2, "Gear 3", "On", "Off").

See also ASAM-MCD 2MC keyword COMPU_VTAB.

Data type Count Description
REAL 1 Int Value 1
CHAR 32 Assigned Text 1 (string should be terminated by 0)
...
REAL 1 Int Value n
CHAR 32 Assigned Text n (string should be terminated by 0)

3.12.11 CCBLOCK – ASAM-MCD2 Text Range Table
With this conversion, a text is assigned to a given value range, i.e. the given text is displayed for all
values lower_range <= value < upper_range for float and lower_range <= value
<= upper_range for non-float values. The first entry contains the default range (i.e. the DEFAULT
string that is to be used in case that there are no other assignments).
This can be used to assign float ranges to verbal descriptions (for example "low", "regular", "high").
See also ASAM-MCD 2MC keyword COMPU_VTAB_RANGE.

Note: Overlapping ranges may not be declared

Data type Count Description
REAL 1 Undefined (to be ignored)
REAL 1 Undefined (to be ignored)
LINK 1 Pointer to TXBLOCK that contains the DEFAULT text
REAL 1 Lower range 1
REAL 1 Upper range 1
LINK 1 Pointer to TXBLOCK that contains text 1
...
REAL 1 Lower range n
REAL 1 Upper range n
LINK 1 Pointer to TXBLOCK that contains text n

Version 3.3 Format Specification MDF Format 23

3.12.12 CCBLOCK – Data Structure Date
This conversion formula is only valid for the data type Byte Array consisting of 7 Byte. Additional
parameters from the CCBLOCK are not necessary. This representation corresponds to the data type
"Date" of the CiA-CANopen specification "Application Layer and Communication Profile", Version 4.0.
Within the Byte Array the Date is specified in the following way:

Data type Identifier Description
UINT16 ms Bit 0 .. Bit 15: Milliseconds (0 .. 59999)
BYTE min Bit 0 .. Bit 5: Minutes (0 .. 59)

Bit 6 .. Bit 7: Reserved
BYTE hour Bit 0 .. Bit 4: Hours (0 .. 23)

Bit 5 .. Bit 6: Reserved
Bit 7: 0 = Standard time, 1 = Summer time

BYTE day Bit 0 .. Bit 4: Day (0 .. 31)
Bit 5 .. Bit 7: Day of week (1 = Monday … 7 = Sunday)

BYTE month Bit 0 .. Bit 5: Month (1 = January .. 12 = December)
Bit 6 .. Bit 7: Reserved

BYTE year Bit 0 .. Bit 6: Year (0 .. 99)
Bit 7: Reserved

3.12.13 CCBLOCK – Data Structure Time
This conversion formula is only valid for the data type Byte Array consisting of 6 Byte. Additional
parameters from the CCBLOCK are not necessary. This representation corresponds to the data type
"Time" of the CiA-CANopen specification "Application Layer and Communication Profile", Version 4.0.
Within the Byte Array the Time is specified in the following way:

Data type Identifier Description
UINT32 ms Bit 0 .. Bit 27: Number of Milliseconds since midnight of Jan 1st 1984

Bit 28 .. Bit 31: Reserved
BYTE days Bit 0 .. Bit 15: Number of days since Jan 1st 1984 (can be 0)

Version 3.3 Format Specification MDF Format 24

3.13 The Channel Dependency Block CDBLOCK

A signal may be a composition of other signals, e.g. for a map/curve or a structure. When saving such
a compound signal, this can be modelled in MDF by a CNBLOCK for the compound signal itself
having a link to a CDBLOCK. The CDBLOCK then lists all signal dependencies, i.e. all signals the
compound signal consists of.

Note: A signal dependency can be a compound signal again.

3.13.1 Block structure of CDBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "CD"
UINT16 1 Block size of this block in bytes (entire CDBLOCK)
UINT16 1 Dependency type

0 = no dependency
1 = linear dependency (vector)
2 = matrix dependency (signals for each matrix line in a separate CGBLOCK)
Since version 3.01:
255 + N = N-dimensional dependency (size of each dimension is listed after the
variable length LINK list, dependent signals can be stored in same CGBLOCK)

UINT16 1 Total number of signals dependencies (m)
LINK 1 Pointer to the data group block (DGBLOCK) of signal dependency 1
LINK 1 Pointer to the channel group block (CGBLOCK) of signal dependency 1
LINK 1 Pointer to the channel block (CNBLOCK) of signal dependency 1
…
LINK 1 Pointer to the data group block (DGBLOCK) of signal dependency m
LINK 1 Pointer to the channel group block (CGBLOCK) of signal dependency m
LINK 1 Pointer to the channel block (CNBLOCK) of signal dependency m
UINT16 1 Optional: size of dimension 1 for N-dimensional dependency
 … Optional fields for N-dimensional dependency valid since version 3.01
UINT16 1 Optional: size of dimension N for N-dimensional dependency

The CDBLOCK basically is a list of references to the "elements" of the compound signal. Each
element is an individual signal which is specified by a LINK triple to its DGBLOCK, CGBLOCK and
CNBLOCK.

For N ≥ 2 dimensions, the elements are listed in a "flat" list which must be interpreted line-oriented.

Example

A 3 x 2 matrix would be stored as follows: ⎥
⎦

⎤
⎢
⎣

⎡
=

232221

131211

aaa
aaa

M 232221131211 ,,,,, aaaaaa

More generally, a i x j x Matrix would be listed as k kjijiii aaaaaaa ,...,,,...,,...,,,..., 21111212111111

For N = 2, either each line of the matrix will be stored in a separated CGBLOCK (e.g. for Dependency
type = 2 will be stored in one CGBLOCK and in another one), or the size of
each dimension will be listed after the list of references (e.g. for Dependency type = 257, the last two
elements have values 3 and 2).

131211 ,, aaa 232221 ,, aaa

For N > 2, only the latter possibility exists.

Note:
The values in the data record that are referenced by the CNBLOCK of the compound signal can be
arbitrary. For simplicity we recommend to reference the signal values of the first dependent signal
(first element of map/curve or structure). As a consequence, then the CNBLOCK of the compound
signal and the CNBLOCK of the first dependency must be in the same channel group (CGBLOCK),
and both CNBLOCKs have the same start offset and number of bits.

Version 3.3 Format Specification MDF Format 25

3.14 The Channel Extension Block CEBLOCK

The CEBLOCK serves to specify source specific properties of a channel, e.g. name of the ECU or
name and sender of the CAN message

3.14.1 Block structure of CEBLOCK
Data type Count Description
CHAR 2 Block type identifier, always "CE"
UINT16 1 Block size of this block in bytes (entire CEBLOCK)
UINT16 1 Extension type identifier

2 = DIM (DIM block supplement)
19 = Vector CAN (Vector CAN block supplement)

... variable Additional fields depending on the extension type.
See extension-specific block supplements.

Note:
• for CAN signals, type Vector CAN (19) should be used
• for ECU signals (CCP, XCP), type DIM (2) should be used

3.14.2 DIM block supplement
Data type Count Description
UINT16 1 Number of module
UINT32 1 Address
CHAR 80 Description
CHAR 32 Identification of ECU

3.14.3 Vector CAN block supplement
Data type Count Description
UINT32 1 Identifier of CAN message
UINT32 1 Index of CAN channel
CHAR 36 Name of message (string should be terminated by 0)
CHAR 36 Name of sender (string should be terminated by 0)

Version 3.3 Format Specification MDF Format 26

4 MDF Data Format

The actual values of the signals, i.e. the time samples for the measurement row, are encoded in the
data block. A data block is always related to a data group and may only contain signal values for
channels respectively channel groups out of this data group.

Signal values that are acquired at the same instants of time are collected and encoded in so-called
data records. A data block thus consists of an arbitrary number of data records. Each data record
normally also contains the time stamp it was recorded.

The descriptions of the channels whose signal values are collected in the same data record are stored
in a channel group. Hence, a channel group lists only channels whose signal values are acquired
simultaneously and stored in the same data record.

In general, a MDF file can either be "sorted" or "unsorted". A sorted MDF file allows faster read access
for individual signal values, whereas for recording measurement data it usually is easier and faster to
write an unsorted MDF file. Thus, as a strategy, a recording tool may write an unsorted MDF file,
possibly sorting it after the recording has finished. On the other hand, an analysis tool might sort the
MDF file once before opening it.

A sorted MDF file requires that each data block contains only data records of the same channel group,
i.e. the data block can contain only one channel group.

In case of an unsorted MDF file, data records of different channel groups may be included. To be able
to distinguish the data records for an unsorted MDF file, each is preceded and optionally followed by a
record ID consisting of the data type UINT8. For a sorted MDF file, the record ID can be (and usually
is) omitted.

The record structure is defined by the index of the first byte containing bits of the signal (byte part of
the start offset and additional Byte offset), the bit offset in the LSB and the number of bits specified for
each signal of the channel group in its CNBLOCK:

• For the data type String or Byte Array the number of bits must be a multiple of 8 (only whole
Bytes). In addition to that a channel of the data type String or Byte Array has to start on a Byte
limit (Start offset in bits must be a multiple of 8).

• For floating-point data types, 32 or 64 bits (4 or 8 Bytes, float and double) must be used,
depending on the float type, and they must start at a Byte limit (Start offset in bits must be a
multiple of 8).
Note: The 10 Byte double (extended precision) channel data type has been declared obsolete
because the IEEE 754 standard does not specify it, and because it is not supported by any
known tool.

• For Integer data types, an arbitrary number of bits are allowed, i.e. you may encode a signal
value with a range of [0-7] in 3 bits only. However, the Integer data type must fit into 8
contiguous Bytes. Note: some applications may only accept up to 32 bits for an Integer value
or expect that it fits into 4 contiguous Bytes.

Up to MDF 3.10, signals with a number of bits ≤ 7 must not exceed a Byte limit, and signals with a
number of bits ≥ 8 have to start at a Byte limit. Starting with MDF version 3.1, these restrictions have
been removed for Integer signals, but still an Integer signal must fit into 8 Bytes.

4.1 Data Format for Sorted MDF Files

All the signal values of a channel group constitute a data record. For a sorted MDF file there is exactly
one channel group for each data group available. Thus all records in the data block have the same
record format. As a consequence, the record ID can be omitted.

The data records inside a data block are listed in the sequence of the time stamps.

Version 3.3 Format Specification MDF Format 27

Note: If the records are not listed based on the time stamps, this should be interpreted as an error.

Version 3.3 Format Specification MDF Format 28

4.2 Data Format for Unsorted MDF Files

In contrast to a sorted MDF file, in an unsorted MDF file data records from different channel groups
may be stored sequentially in the data block. Each record is clearly related to a channel group by
means of a record ID (of data type UINT8) at the beginning of the record and optionally after the end
of each record (see CGBLOCK, Record ID). The record structure itself is identical to the one for a
sorted MDF file.

The data records inside a data block are listed for each record type in the sequence of their time
stamps.

Note: If the records are not listed based on the time stamps, this should be interpreted as an error.

Reading a data block of an unsorted MDF file, the records have to be read sequentially from the start
of the data block. For each record, the record ID must be checked and the size of the record for the
respective channel group must be considered.

4.3 Reading Signal Values from a Data Record

The structure of the data record is defined by the following elements of CNBLOCK:

• signal data type
• number of bits
• start offset
• additional Byte offset

In addition, we also have to consider the number of Bytes used for the record ID, specified in
DGBLOCK, and – if not specified by the signal data type yet – the default Byte order / Floating point
format specified in IDBLOCK.

The start position of the signal is always counted from the start of the plain record data, i.e. without the
Bytes used for the record ID. So, if a record ID is present, we have to skip its Bytes at the start of the
record. Then we determine the first Byte of the "signal Bytes", i.e. the first Byte of the minimum range
of Bytes that contains all bits of the signal value.

Next, we copy the signal Bytes to a memory buffer. Here we have to consider the Byte order specified
by the signal data type, or, if not specified there, by the default Byte order of the file. If the specified
Byte order is different to the memory system our evaluation program runs on, we have to adapt the
Byte order. This means that we have to swap the required Bytes when copying them to a memory
buffer (see example below).

Now we apply the bit offset to the memory buffer, i.e. we right-shift the bits by bit offset. As a result,
the LSB of the signal becomes the LSB of the first Byte of the buffer. We now can interpret the number
of bits for the signal as value, which possibly requires masking unused bits.

Recapitulating, the steps to de-code the record value are

1. Skip record ID
2. Apply Byte offset = additional Byte offset + (Start offset div 8)
3. Copy signal Bytes to memory buffer
4. Possibly swap signal Bytes (depending on Byte order)
5. Apply bit offset = right shift by (start offset modulo 8) bits
6. Mask unused bits
7. Read and interpret the value in memory buffer

Version 3.3 Format Specification MDF Format 29

Plain record data

record ID Byte 0 Byte 1 Byte x

4.3.1 Example 1: Little Endian (Intel) Byte Order
We assume a (unsorted) MDF file with Little Endian (Intel) default Byte order, which we evaluate on
an Intel system. The CNBLOCK of the signal we want to de-code has the following values:

• signal data type = 0 (=> unsigned integer with default Byte order)
• number of bits = 14
• start offset = 22
• additional Byte offset = 0

The number of Bytes used for the record ID is 1 (specified in DGBLOCK), so the very first Byte of
each record contains its record ID.

As can be seen in the following graphic, after extracting the relevant bits for the signal, we get a value
of 16182 in decimal notation.

record ID Byte 0 Byte 1 Byte 2

Byte offset = 0 + 22 div 8 = 2

Byte 4

Number of signal Bytes = 3

Byte NByte 3

0x01 0x23 0x45 0xAB 0xEF0xCD

0xAB 0xEF0xCD

Byte 0 Byte 2Byte 1

memory buffer:

binary notation:

10101011

0xEF

11001101

0xCD

11101111

0xAB

 LSB MSB

Number of bits = 14 Bit offset =
22 mod 8 = 6

Byte 1 Byte 0

extracted bits: 11111100110110 = 16182 (dec)

Byte 2

Little Endian (Intel) Byte Order

Byte offset =
add. Byte offset + (Start offset div 8)

Byte x+n record ID

Number of signal Bytes =
Number of Bytes required to store

(Number of bits) + (Start offset modulo 8) bits

Version 3.3 Format Specification MDF Format 30

4.3.2 Example 2: Big Endian (Motorola) Byte Order
For this example we consider exactly the same settings as for Example 1, expect that the signal data
type now is 9 = unsigned integer with Big Endian (Motorola) Byte order.

The Byte order specified in the signal data type overrules the default Byte order of the file, because
the file might have been written by a program running on an Intel system, but the signals were
acquired from an ECU with a Motorola processor.

The process to de-code the signal value is exactly the same, with the only difference that when
copying the signal Bytes to the memory buffer, we have to swap the Bytes (Byte 0 with Byte (N-1),
Byte 1 with Byte (N-2), etc.). The application of the bit offset to the memory buffer then is identical
(usually implemented by a left shift operation).

record ID Byte 0 Byte 1 Byte 2

Number of signal Bytes = 3

Byte offset = 22 div 8 = 2

Byte 4 Byte N

0x01 0x23 0x45 0xAB 0xCD 0xEF

Byte 3

0xEF 0xAB0xCD

Byte 0 Byte 2Byte 1

memory buffer:

binary notation:

10101011

0xAB

11001101

0xCD

11101111

0xEF

 LSB MSB

Number of bits = 14 Bit offset =
22 mod 8 = 6

Byte 1 Byte 0

extracted bits: 10111100110111 = 12087 (dec)

Byte 2

swap Bytes!

Big Endian (Motorola) Byte Order

	1 Introduction
	1.1 Outline
	1.2 Abbreviations

	2 MDF Versions
	2.1 Version History
	2.2 Version Handling
	2.3 Rules to Ensure MDF Compatibility between Versions

	3 MDF General Block Format
	3.1 Definition of Data Types Used
	3.2 Overview of Block Types Used
	3.3 The File Identification Block IDBLOCK
	3.3.1 Block structure of IDBLOCK

	3.4 The Header Block HDBLOCK
	3.4.1 Block structure of HDBLOCK

	3.5 The Text Block TXBLOCK
	3.5.1 Block structure of TXBLOCK

	3.6 The Program-Specific Block PRBLOCK
	3.6.1 Block structure of PRBLOCK

	3.7 The Trigger Block TRBLOCK
	3.7.1 Block structure of TRBLOCK

	3.8 The Sample Reduction Block SRBLOCK
	3.8.1 Block structure of SRBLOCK
	3.8.2 Motivation for Sample Reduction
	3.8.3 Layout of Reduced Samples

	3.9 The Data Group Block DGBLOCK
	3.9.1 Block structure of DGBLOCK

	3.10 The Channel Group Block CGBLOCK
	3.10.1 Block structure of CGBLOCK

	3.11 The Channel Block CNBLOCK
	3.11.1 Block structure of CNBLOCK

	3.12 The Channel Conversion Block CCBLOCK
	3.12.1 Block structure of CCBLOCK
	3.12.2 CCBLOCK – Linear Function with 2 Parameters
	3.12.3 CCBLOCK – Polynomial Function with 6 Parameters
	3.12.4 CCBLOCK – Tabular, with Interpolation
	3.12.5 CCBLOCK – Tabular
	3.12.6 CCBLOCK – Exponential
	3.12.7 CCBLOCK – Logarithmic
	3.12.8 CCBLOCK –Rational Conversion Formula
	3.12.9 CCBLOCK – ASAM-MCD2 Text formula
	3.12.10 CCBLOCK – ASAM-MCD2 Text Table
	3.12.11 CCBLOCK – ASAM-MCD2 Text Range Table
	3.12.12 CCBLOCK – Data Structure Date
	3.12.13 CCBLOCK – Data Structure Time

	3.13 The Channel Dependency Block CDBLOCK
	3.13.1 Block structure of CDBLOCK

	3.14 The Channel Extension Block CEBLOCK
	3.14.1 Block structure of CEBLOCK
	DIM block supplement
	Vector CAN block supplement

	 MDF Data Format
	4.1 Data Format for Sorted MDF Files
	4.2 Data Format for Unsorted MDF Files
	4.3 Reading Signal Values from a Data Record
	4.3.1 Example 1: Little Endian (Intel) Byte Order
	4.3.2 Example 2: Big Endian (Motorola) Byte Order

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

